4 research outputs found

    Workflows For X-ray And Neutron Interferometry/Tomography As Applied To Additive Manufacturing

    Get PDF
    Grating-based interferometry/tomography is being rapidly developed for non-destructive evaluation of additive manufacturing test articles. An application requiring an efficient workflow is extremely necessary for stress and fatigue testing samples. At present, scientific workflows play an important role for computational experiments in additive manufacturing 3D printing and interferometry/tomography imaging analysis. A clear workflow template allows scientists to process experiments easier and faster. Work flow library grows, but to find an appropriate workflow for their task is challenging. In our research, there are mainly three portions in the workflow, interferometry analysis, image reconstruction and 3D visualization. Currently, the hierarchy of workflows in interferom etry/tomography projects is Mathematica, TomoPy/ASTRA/Jupyter notebook, VisTrails and Dragonfly. In general, two methods of interferometry analysis have been used in the first portion of workflow, single-shot interferometry and stepped-grating interferometry. As for the second portion, with a Jupyter notebook, the reconstruction method ’Gridrec’ in TomoPy and ’SIRT’ (Simultaneous Iterative Reconstruction Technique) in ASTRA gener ated a powerful reconstruction volume for absorption projections and dark-field projections separately. For the last portion, Dragonfly developed by ORS (Object Research System) company is a 3D visualization software with powerful scripting capabilities implemented in Python macros. Meanwhile, the VisTrails workflow incorporated both interferometry anal ysis and image reconstruction portions into VisTrails modules. Workflows in VisTrails hide much of the complexity of Mathematica or Python programming from users. Instead, with a simple GUI, it is possible for users to make their interferometry/tomography workflows through VisTrails modules. Especially, for DPC (differential phase contrast) images in grating-based interferome try/tomography, we addressed the phase unwrapping issue with the method of 2D integra tion through generating phase images. With the algorithm, we have demonstrated the 2D integrated phase images denote a clearer contrast than DPC images

    Non-destructive evaluation of additively manufactured polymer objects using X-ray interferometry

    No full text
    © 2018 Elsevier B.V. X-ray interferometry provides a dark-field image, essentially a small-angle X-ray scattering image, of the voids and print defects in an additively manufactured polymer object. The interferometers used were tuned to scattering length 2–5 μm and configured to measure scattering along both vertical and horizontal directions. The samples studied included Stanford Bunnies, fabricated from acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), and a quadratic test object fabricated from PLA. The dark-field projection images show orientation-dependent X-ray scattering which is due to anisotropic voids and gaps at the filament-to-filament interface in these fused deposition modeling additive manufacturing objects. SEM corroborates the existence of gaps between filaments. The absorption and dark-field volumes are used to correlate printhead trajectory with print defect density. The absorption volume is used to generate perimeter points slice-by-slice, and from these points, the 2D curvature is calculated. There is a slight increase in X-ray scattering, hence print defect density, at regions with high curvature. Two X-ray interferometry techniques were used: stepped-grating and single-shot. As currently developed, stepped-grating has the larger field-of-view—examination of an entire test object—whilst single-shot has the potential for real-time, in situ measurement of the printing process within 1 mm of the printhead

    Neutron Imaging of Laser Melted SS316 Test Objects with Spatially Resolved Small Angle Neutron Scattering

    No full text
    A novel neutron far field interferometer is explored for sub-micron porosity detection in laser sintered stainless steel alloy 316 (SS316) test objects. The results shown are images and volumes of the first quantitative neutron dark-field tomography at various autocorrelation lengths, ξ . In this preliminary work, the beam defining slits were adjusted to an uncalibrated opening of 0.5 mm horizontal and 5 cm vertical; the images are blurred along the vertical direction. In spite of the blurred attenuation images, the dark-field images reveal structural information at the micron-scale. The topics explored include: the accessible size range of defects, potentially 338 nm to 4.5 μ m, that can be imaged with the small angle scattering images; the spatial resolution of the attenuation image; the maximum sample dimensions compatible with interferometry optics and neutron attenuation; the procedure for reduction of the raw interferogram images into attenuation, differential phase contrast, and small angle scattering (dark-field) images; and the role of neutron far field interferometry in additive manufacturing to assess sub-micron porosity

    Neutron imaging of laser melted SS316 test objects with spatially resolved small angle neutron scattering

    No full text
    © 2017 by the authors. A novel neutron far field interferometer is explored for sub-micron porosity detection in laser sintered stainless steel alloy 316 (SS316) test objects. The results shown are images and volumes of the first quantitative neutron dark-field tomography at various autocorrelation lengths, x. In this preliminary work, the beam defining slits were adjusted to an uncalibrated opening of 0.5 mm horizontal and 5 cm vertical; the images are blurred along the vertical direction. In spite of the blurred attenuation images, the dark-field images reveal structural information at the micron-scale. The topics explored include: the accessible size range of defects, potentially 338 nm to 4.5 μm, that can be imaged with the small angle scattering images; the spatial resolution of the attenuation image; the maximum sample dimensions compatible with interferometry optics and neutron attenuation; the procedure for reduction of the raw interferogram images into attenuation, differential phase contrast, and small angle scattering (dark-field) images; and the role of neutron far field interferometry in additive manufacturing to assess sub-micron porosity
    corecore